PAVEMENT RIDE QUALITY

Narinder S. Kohli, P.E. Supervising Engineer Pavement & Drainage Management November 1, 2019

- What is Pavement Smoothness?
- Why Pavement Smoothness Specifications is required?
- History / Background
- What is IRI?
- How Smoothness is measured?
- NJDOT Specification
- Pay Adjustment
- Ride Quality for Local-Aid Projects

What is Pavement Smoothness?

 Smoothness is a measure of the level of comfort experienced by the traveling public while riding over a pavement surface.

Smoothness is used interchangeably with roughness as an expression of the deviation of a surface from a true planar surface (as defined by ASTM E867). *Ref. Tech Brief FHWA-HIF-16-032*

- What is Pavement Smoothness?
- Why Pavement Smoothness Specifications is required?
- History / Background
- What is IRI?
- How Smoothness is measured?
- NJDOT Specification
- Pay Adjustment
- Ride Quality for Local-Aid Projects

 Why Pavement Smoothness Specifications?
 Moving Ahead for Progress in the 21st Century (MAP 21) For NHS, ride quality is in performance matrix.

Pavement smoothness is important to the user (taxpayer).

AASHO Road Test studies have found that road users judge a road primarily by its ride quality.

National Highway User Survey conducted in 1995 and the Federal Highway Administration (FHWA) Infrastructure Survey conducted in 2000, found that the traveling public considers pavement conditions, which includes ride quality, to be **third most important improvement needed for highways, behind only traffic flow and safety.**

Why Pavement Smoothness Specifications? Smoother roads last longer.

Numerous studies from the Federal Highway Administration, National Cooperative Highway Research Program (NCHRP), and National Asphalt Pavement Association (NAPA) have found **pavements built smoother tend to last longer.**

Average Percent Increase in Performance Life							
Reduction in roughness	10%	25%	50%				
Alabama PCC	11	28	55				
Arizona PCC	7	18	36				
Illinois CRC	5	11	22				
Minnesota PCC	6	15	30				
Illinois AC/PCC	4	9	18				
Alabama AC	8	20	39				
Arizona AC	3	9	18				
Minnesota AC	5	11	23				

Enhancing Pavement Smoothness by Mark Swanlund

Issue No: Vol. 64 No. 2 Date: Sept/Oct 2000 Source:

https://www.fhwa.dot.gov/publications/pu blicroads/ooseptoct/smooth.cfm

Initial IRI vs. Age to Failure Relationship (Failure only due to roughness of pavement was considered)

Age 140 120 Age to Failure= -37.75ln(Initial IRI) + 194.87 100 to Failure 80 -Age -Log. (Age) 60 Age 40 20 0 50 150 100 200 0 Initial IRI

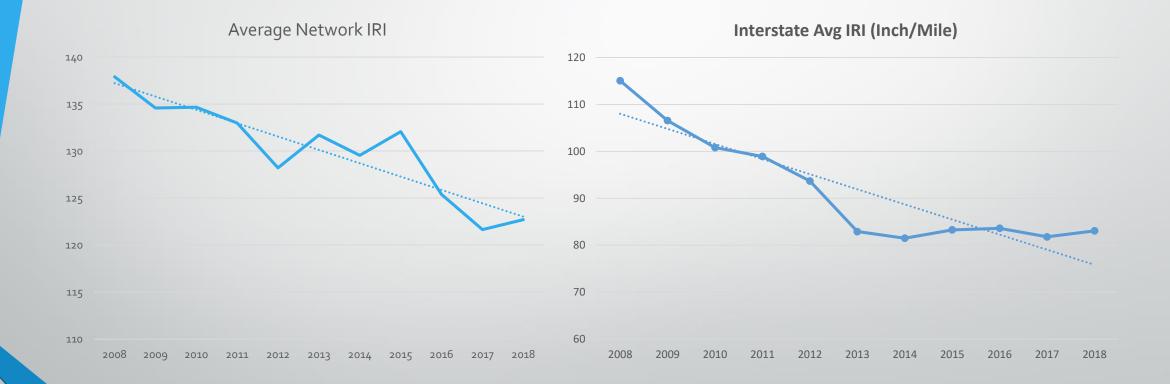
Source: Rational Method for Developing Ride Quality Pay Adjustments from PMS IRI Data by Dr. Nicholas Vitillo, PhD , CAIT

Why Pavement Smoothness Specifications?

Smoother roads stay smoother longer.

Evidence from studies of smoothness progression over time shows that pavements built smoother will **stay smoother longer** when designed and constructed properly.

Smoother roads are safer.


Rough roads can result in a loss of vehicle control, Reduction in a person's ability to perform motor tasks, Driver fatigue, and an increased frequency of accidents

Smoother roads save money.

Save both the user and the owner-agency money.

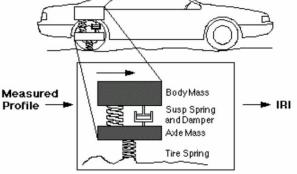
Studies have found that pavements build smoother initially, require less maintenance over the life of the pavement. Additionally, studies such as WesTrack have shown that smoother pavements **decrease both fuel consumption and vehicle maintenance, which is a savings for roadway users.**

NJDOT NETWORK RIDE QUALITY

Source: NJDOT PMS Data

- What is Pavement Smoothness?
- Why Pavement Smoothness Specifications is required?
- History / Background
- What is IRI?
- How Smoothness is measured?
- NJDOT Specification
- Pay Adjustment
- Ride Quality for Local-Aid Projects

History / Background


- In the early 1980s the highway engineering community identified road roughness as the primary indicator of the utility of a highway network to road users.
- US National Cooperative Highway Research Program (NCHRP) initiated a research project to help state agencies improve their use of roughness measuring equipment.[[]
- Continued by The World Bank
- Findings from the World Bank testing showed that most equipment in use could produce useful roughness measures on a single scale if methods were standardized. The roughness scale that was defined and tested was eventually named the International Roughness Index (IRI).

- What is Pavement Smoothness?
- Why Pavement Smoothness Specifications is required?
- History / Background
- What is IRI?
- How Smoothness is measured?
- NJDOT Specification
- Pay Adjustment
- Ride Quality for Local-Aid Projects

What is IRI

IRI is calculated using a quarter-car vehicle math model, whose response is accumulated to yield a roughness index with units of slope (in/mi, m/km, etc.). NJDOT calculate in Inch/Mile.

- Quarter-car math model
 - Replicates roughness measurements from vibrations
 - Response Type Road Roughness Measuring

Computer Algorithm

- System
- IRI is obtained from measured longitudinal road profiles.
- AASHTO/ASTM References: ASTM E1926-Standard Practice for Computing IRI of Roads from Longitudinal Profile Measurements, AASHTO R-56 certification of Inertial Profiling Systems, AASHTO R-57 Operating Inertial Profiling Systems, AASHTO R-54 Accepting Pavement Ride Quality When Measured Using Inertial Profiling Systems.

- What is Pavement Smoothness?
- Why Pavement Smoothness Specifications is required?
- History / Background
- What is IRI?
- How Smoothness is measured?
- NJDOT Specification
- Pay Adjustment
- Ride Quality for Local-Aid Projects

Dynatest Profiler

LWP Laser

RWP Laser

The longitudinal pavement profile measured using an inertial profiler which include:
1) An accelerometer to measure the movement of the vehicle frame,
2) Noncontact sensors (commonly lasers) to measure the relative displacement
between the vehicle frame and the road surface at fixed intervals along the pavement, and

3) A distance measuring device to record the distance along the roadway.

Dynatest Profiler Images

- What is Pavement Smoothness?
- Why Pavement Smoothness Specifications is required?
- History / Background
- What is IRI?
- How Smoothness is measured?
- NJDOT Specification
- Pay Adjustment
- Ride Quality for Local-Aid Projects

What type of NJDOT projects have Ride Quality Requirements?

- All Paving Projects
- All treatments (HMA, SMA, OGFC, HPTO, UTFC, Micro surfacing, Slurry Seal, Diamond Grinding)
- All type of pavements (Flexible, Rigid and Composite –HMA over Concrete)
- For projects paving on mainline travel lanes equal to or greater than 2,500 feet length and any lane within the project of at least 1,000 feet length, the Department will evaluate the ride quality.
- The Department evaluate the ride quality for projects paving on mainline travel lanes of less than 2,500 feet length, if the RE determines that the work may not conform to the ride quality requirements.

Ta	ble 401.03.03-8 Ta	rget IRI for Resurfac	ing or Reco	nstruction	(T) ³		
Roadway Type	Current average	New Construction	Number of Operation for other than New Construction or Reconstruction ⁵				
	IRI (C)	or Reconstruction	One ⁴	Two ⁴	Three ⁴	Four or More ⁴	
			Target IRI (T)				
	≤ 60		50	50	50	50	
	61 to ≤95		53	50	50	50	
Freeways or Limited	96 to ≤170	50	55	53	50	50	
Access Highways	171 to≤200	50		55	53	50	
	201 to ≤285		$0.64C^{7}$	58	55	50	
	>2868			60	58	53	
	≤ 60		60	60	60	60	
Other than Freeways or	61 to ≤95		63	60	60	60	
Limited Access	96 to ≤170	<u>()</u>	66	63	60	60	
Highways with speed	171 to≤200	60		66	63	60	
limit > 35 MPH	201 to ≤285		$0.64C^{7}$	69	66	60	
	>2868			72	69	63	
	≤ 60		70	70	70	70	
Other than Freeways or	61 to ≤95		74	70	70	70	
Limited Access	96 to ≤170	70	77	74	70	70	
Highways with speed	171 to≤200	70		77	74	70	
limit \leq 35 MPH	201 to ≤285		0.64C ⁷	81	77	70	
	>2868			84	81	74	

1. The Department will determine target IRI (T) of roadways containing multiple speed limits of greater than 3 MPH and less than or equal to 35 MPH based on the following equation:

Target IRI of a roadway consists of N Roadway type (T) = $\frac{T_1L_1 + T_2L_2 + \dots + T_NL_N}{L_1 + L_2 + L_3 + \dots + L_N}$

Where TN is the Target IRI of N section and LN is the length of N section in miles to the nearest 0.01 mile

2. Current average IRI (C) is the average of the latest available preconstruction network level IRI data of right mo travel lane from PDMT.

- 3. Target IRI (T) is the lowest of Current average IRI (C) and T determined from the table.
- 4. Multiply T with 1.05 for HMA over Concrete, if total HMA after proposed treatment is less than 8 inch thick.
- 5. Milling is one operation. Paving each layer of asphalt mix is an individual operation unless plans specify pavin a mix in two lifts. In such case, each lift is considered as an operation.

6. Construction or reconstruction of full pavement box on subgrade is new construction or reconstruction.

7. Use Pay Equation as below:

PA=0

IRI>T PA=PAE

8. For paving over rubblized concrete, use C >286 to determine target IRI, then multiply T with 1.05 if total HM. after proposed treatment is less than 8-inch thick.

How Exclusions Will Now Be Shown

÷	Table 401.03.03-9 –EX	CLUSIONS FOR RESURFACING OR	RECONSTRUCTION
	Roadway	Lane Number	Exclusions
	Rt-33 NB	Lane 1	5
	Rt-33 SB	Lane 1	7

Lane designation is by increasing numbers from left to right in the direction of traffic with left lane being Lane 1.

b. Corrective Action. If the average IRI is greater than the 170 inches per mile after testing is performed, the Department may require corrective action or assess the maximum negative pay adjustment as computed in Table 401.03.03-7. If the Department requires corrective action, the Contractor must submit a plan for corrective action. If the Contractor's plan for corrective action is approved and the lot is corrected, the Department will retest and evaluate the corrected area as a new lot that must meet the same requirements as the initial work. If the Contractor's plan for corrective action is not approved, the Department may require removal and replacement. The replacement work is subject to the same requirements as the initial work.

NJD

No nome | Services A to 2 | Departments/Agencies | 1 Age

STATE OF NEW JERSEY DEPARTMENT OF TRANSPORTATION Phil Murphy, Governor Sheila Oliver, Lieutenant Governor				NJDOT Site Index Search: NJ Home O NJDO				
Phil Murphy, Governor Sheila Oliver, Lieutenant Governor Disclaimer					Disclaimer G <u>Se</u>	elect Language		
OT Home	•	About NJDOT	•	Traveler Info	•	Community Programs	Reference / Links	-
nooring	_	In the Works	_	Canital Brogram	_	Multimodal/Eroight -	Doing Bucinoco	

Pavement & Drainage Management and Technology Overview

Pavement Design & Technology

Pavement Management

Ride Quality Requirements Pavement Acceptance Test Request

Pavement & Drainage Management and Technology

Ride Quality Requirements

The New Jersey Department of Transportation (NJDOT) is implementing a ride quality specification that uses profile data collected with inertial profilers for acceptance testing of the final riding surface. The ride specification is applicable for either hot mix asphalt or Portland cement concrete (PCC) pavements and uses the international roughness index (IRI) computed from profile measurements to quantify the level of ride quality achieved from construction.

Ride Quality Requirements (RQR) Software

To assist designers in developing ride quality requirements for NJDOT projects, below is the link to download Ride Quality Requirements (RQR) software. The RQR is a Microsoft Excel work book containing various macros to automate production of required pay equations and exclusions for ride quality specifications. Make sure macro is enabled when the spreadsheet is opened and the file is saved with an .XSLM extension.

- <u>RQR Software</u> (zip 2.3m macro enabled excel file)
 - Examples (pdf 69k)
 - Instructions (pdf 1.2m)
- <u>PA Estimator</u> (xls 1.6m)

🜔 Contact Us | Privacy Notice | Legal Statement | Accessibility Statement 👔

https://www.state.nj.us/transportation/eng/pavement/ridequality.shtm

- What is Pavement Smoothness?
- Why Pavement Smoothness Specifications is required?
- History / Background
- What is IRI?
- How Smoothness is measured?
- NJDOT Specification
- Pay Adjustment
- Ride Quality for Local-Aid Projects

IRI Pay Adjustment

\$

NEW JERSEY DEPARTMENT OF TRANSPORTATION

Pavement & Drainage Management & Technology

Summary of Ride Quality Pay Adjustment

\$

Incentive Disincentive Benefits of Ride Quality PA

- Ensures contractor quality of work
- Allows DOT to retain damages for poor work

Specification

- Compliance with MAP21 requirements
- Ensures contractor quality of work
- Better roads for the public –Users satisfaction (decrease in frequency of accidents, decrease in vehicle maintenance and improve fuel efficiency
- Reduces deficient roads, improve performance and last longer

- What is Pavement Smoothness?
- Why Pavement Smoothness Specifications is required?
- History / Background
- What is IRI?
- How Smoothness is measured?
- NJDOT Specification
- Pay Adjustment
- Ride Quality for Local-Aid Projects

Ride Quality for Local-Aid Projects

- Use latest Updated Specs
- Ride Quality is required for all NHS and State Owned Roads
- Paving Length as specified in the spec
- Following information are required to define project specific ride quality requirements:
 - Preconstruction IRI Network Da
 - Exclusion Calculations
 - Post Construction QA Testing
 - Pay Adjustment Calculation

- Examples (pdf 69k)
- Instructions (pdf 1.2m)
- <u>PA Estimator</u> (xls 1.6m)

	Current average	New Construction	Construction or Reconstruction ⁵					
Readway Type	IRI (C) Reconstruction		On e ⁴	Two ⁴	Three ⁴	Four of More ⁴		
	$\begin{array}{c} \leq 60 \\ = 61 \ \text{to} \ \text{sys} \\ > 286^{\dagger} \\ > 28$		Targe	t IRI (T)				
	≤ 60		50	50	50	50		
	61 to ≤95		53	50	50	50		
Freeways or Limited	96 to ≤170		55	53	50	50		
Access Highways	171 to≤200	50		55	53	50		
	201 to ≤285		0.64C ⁷	58	55	50		
	>2868			60	58	53		
Other than Freeways or Limited Access Highways with speed limit > 35 MPH	≤ 60		60	60	60	60		
	61 to ≤95		63	60	60	60		
	96 to ≤170	60	66	63	60	60		
	171 to≤200	00		66	63	60		
limit > 35 MPH	201 to ≤285		0.64C ⁷	69	66	60		
	>2868			72	69	63		
	≤ 60		70	70	70	70		
Other than Freeways or	61 to ≤95		74	70	70	70		
Limited Access	96 to ≤170	70	77	74	70	70		
Highways with speed	171 to≤200	70		77	74	70		
limit≤35 MPH	201 to ≤285		0.64C ⁷	81	77	70		
	>2868			84	81	74		

Number of Operation for other than New

The Department will determine target IRI (T) of roadways containing multiple speed limits of greater than MPH and less than or equal to 35 MPH based on the following equation: $\Gamma_{1L0} + T_{1L0} + \cdots \dots T_{NL0}$

rget IRI of a roadway consists of N Roadway type (T) = $\frac{L_1 - L_1 + L_2 - L_2}{L_1 + L_2 + L_3 + \dots + L_N}$

Where TN is the Target IRI of N section and LN is the length of N section in miles to the nearest 0.01 mile . Current average IRI (C) is the average of the latest available preconstruction network level IRI data of right mo travel lane from FDMT.

- Target IRI (T) is the lowest of Current average IRI (C) and T determined from the table.
- Multiply T with 1.05 for HMA over Concrete, if total HMA after proposed treatment is less than 8 inch thick.
 Milling is one operation. Paving each layer of asphalt mix is an individual operation unless plans specify pavin a mix in two lifts. In stuck case, each lift is considered as an operation.
- a mix in two lifts. In such case, each lift is considered as an operation.
 Construction or reconstruction of full pavement box on subgrade is new construction or recon
- Construction or reconstruction
 Use Pay Equation as below:
- IRIST
 - IRI>T PA=PAE
- . For paving over rubblized concrete, use C >286 to determine target IRI, then multiply T with 1.05 if total HM after proposed treatment is less than 8-inch thick.

	NEW JERSE			Managem					\geq
	<u>Summa</u>	ry of I	Ride Q	uality	Pay A	djust	ment		
Project:									
			Before Exclusions After Exclusions						
Lane	Pay Adjustment	Total Number of Sublots	Average IRI	Standard Deviation	Average IRI After Exclusion S	Standar d Deviatio	Minimum 7 Maximu n IRI	8 of Lots with IRIs Target	B o lot wit IRI Targ
0	\$0	0	#DIV/0!	#DI¥/0!	#DIV/0!	#DIV/0!	070	0	0
0	\$0	0	#DI¥/0!	#DI¥/0!	#DI¥/0!	#DI440i	010	0	0
0	\$0	0	*DIA10i	#DI¥/0!	#DIV/0!	#DIV/0!	0/0	0	0
0	\$0	0	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	070	0	0
		F	a	ge	1				
IRI Test Date:	1/0/1900	Sublot Total:		l (Before sions) :	Avg. IR Exclus		IRI C	heck Da	ate :
Total Pay Adjustment : \$0		#DI¥70!		#DI¥/0!		1/0/1900			
Torget I	RI Calculation:		1						_
	ement Management Da	a Testing	1/1/1900						
Table for Ta	rget IRI		Table 401.0	13.03-8 Targe	t IRI for Res	urfacing or l	Reconstru	tion	
	construction IRI Paver t (Inch/Mile)	ient	63						
Composite	factor applied		No						
Type of Roa			Other than Freeways or Limited Access Highways with speed limit ≤ 35 MPH						
Number of C	Operations		Reconstru	ction					_

Narinder S. Kohli, P.E. Narinder.Kohli@dot.nj.gov 609 963 1714